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Topics:
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* Markov Decision Process

e Reinforcement Learning

* Multi-Agent Reinforcement Learning

* Deep Neural Networks

* Long Short-Term Memory Networks

e Sumo (Simulation of Urban Mobility)
Cdaptive Traffic Signal Control
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Markov Decision Process

You want to go from the Church of St. Francis to the Belvedere.

Two paths take you there, but you don't know which path is the quickest.
We need to create a model to represent this problem.

This is called the Markov Decision Process.

P, (s, 51] = Pr(s;1 = s | 8¢ = s,a; = a)
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Reinforcement Learning
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Reinforcement Learning

(SA RSA \

* Expected SARSA

* Q-Learning

* General Q-Learning
* QV-Learning

* Double Q-Learning
* Actor-Critic

N /
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Reinforcement Learning

Advantage Actor-Critic (A2C)
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Deep Reinforcement Learning

State-Action Value
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Q Learning
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Deep Q Learning
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Mu

Type:

* Cooperative
* Competitive
* Mixed

\-

~

J

ti-Agent Reinforcement Learning

/

N\

Issues:

\

Non Stationarity
Partial Observability
Training schemes
Scalability
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Multi-Agent Reinforcement Learning

tackling MARL with traditional RL is not straightforward. If all agents observe the true state
we can model a cooperative multi-agent system as a single meta-agent. However, the size of
this meta-agent’s action space grows exponentially in the number of agents. Furthermore, it is
not applicable when each agent receives different observations that may not disambiguate
the state. Hence:

4 )
* Independent Deep Q-Learning (IDQL)

* Independent Deep Advantage AC (IA2C)

* Multi-agent Deep AC (MA2C)
\ /

New challenges: now the environment becomes partially observable from the
viewpoint of each local agent due to limited communication among agents
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Traffic Signal Control
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Traffic Signal Control
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Traffic Signal Control

wave states FC (128)

wave[veh.] measures the total number of
waiting and approaching vehicles along each
incoming lane, within 50m to the intersection

softmax (actor)

The waiting time of a vehicle is defined as
the time (in seconds) spent with a speed
below 0.1m/s since the last time it was
faster than 0.1m/s. wait[s]measures the
cumulative delay of the first vehicle along
each incoming lane wait states

LSTM (64) ,

Neighbor policies are the policies or
the closest Traffic Signal Controllers

linear (critic)

neighbor policies FC (64)
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Traffic Signal Control
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Traffic Signal Control
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Traffic Signal Control
To do:

4 N

e City of Palermo/Other cities

* Deep Q-Learning performance analysis

* Double Deep Q-Learning and Experience Sampling
* Other Hyper/Meta-parameters

* Other Deep Learning Algorithms

-
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Traffic Signal Control

train
dgn_Da_gradnorm dgn_Da_loss dgn_0a_q
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Traffic Signal Control
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Traffic Signal Control
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Traffic Signal Control

SUMO: Palermo ( ‘via Dante’ area)

TRAFFIC. LIGHTS \“. )

il '\x -~ \

\Vehicles
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Traffic Signal Control

SUMO: Torino ( ‘Porta Nuova Station’) area
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Thank you for watching/listening
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Reinforcement Learning

In RL, an agent interacts with its environment, typically modeled as a MDP (S,A,p,r,y), with state
space S, actionspace A, and unknown transition dynamics p(s’|s,a). At each discrete time step,
the agent receives a reward r(s,a,s’) € R for performing action a in states and arriving at the state
s’. The goal of the agent is to maximize the expectation of the sum of discounted rewards, known

as the return:

Ry = Z Vi 'T(Si; ai;5i+1)

i=t+1

which weighs future rewards with respect to the discount factor y€[0,1).
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Traffic Signal Control
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